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Abstract This article discusses the potential to use Dynamic Geometry 

Software (DGS) to form conceptual links across enlargement and similarity 

by developing learners’ understanding of scale factor and ratio. From the 

theoretical perspective of situated abstraction, a combination of both 

situated cognition and mathematical abstraction, it analyses existing 

literature on the teaching, learning and assessment of enlargement and 

similarity as well as literature on DGS and how it acts as a microworld, 

where an array of situations in a mathematically consistent environment 

can be created. Particular focus is given to how the dragging and 

measurement facilities in DGS support abstractions through both 

amplification and reorganisation of traditional pencil and paper methods. 

The empirical element of this article describes a small scale classroom based 

project on the use of DGS as a microworld for transformation geometry. 

Through analysing learners’ dialogue and written responses to tasks, it 

proposes that a combination of minimally pre-constructed tasks, peer-

discussion and utilising the dragging and measurement facilities, can 

enhance the observation of patterns in transformation geometry and 

concludes that these conditions can support learners to move from the 

particular to the general, allowing abstractions to be conceived and 

strengthening learners’ understanding of enlargement and similarity. 

Keywords: Dynamic Geometry Software (DGS); Mathematical Abstraction; Microworld; Situated 

Abstraction; Situated Cognition; Transformation Geometry 

 

GLOSSARY OF TERMS 

Situated cognition: the theory that all learning is in context as the classroom can provide the context. 

Mathematical abstraction: the theory of moving from particular or specific examples to the ability to 

generalise. 

Situated abstraction: where situated cognition and mathematical abstraction meet; the theory of 

making connections in mathematics through making sense of a concrete situation. 

Microworld: a digital educational environment where learners can explore and receive immediate 

feedback from the technology. 

Amplification: in terms of transformations using DGS, the ability to perform large numbers of 

transformations which would be time consuming without the technology. 

Reorganisation: in terms of transformations using DGS, the ability to see between the usual 

transformations, for example enlargements between scale factor 2 and scale factor -2, allowing the 
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learner to see what happens at scale factor 1, and when an enlargement begins to reduce, or at what 

point the image goes in the opposite direction etc. 

 

INTRODUCTION 

Dynamic Geometry Software (DGS) is a digital technology which was developed in the 1980s; however 

it has not had the expected impact in the classroom (Jones, 2011; JMC, 2011). Even in ‘successful’ 

mathematics departments, DGS is often primarily used as a demonstration tool (Ruthven et al., 2008) 

which has limited potential for learners to form and test their own conjectures. From the theoretical 

perspective of situated abstraction, a combination of both situated cognition and mathematical 

abstraction, in this article I discuss the potential to use dynamic geometry to form conceptual links 

across enlargement and similarity by developing learners’ understanding of scale factor and ratio. 

Firstly I analyse the wealth of literature on DGS and how it acts as a microworld, where an array of 

situations in a mathematically consistent environment can be created. How this applies to the 

theoretical framework of situated abstraction is then discussed, with particular focus on how the 

dragging and measurement facilities in DGS support abstractions through both amplification and 

reorganisation of traditional pencil and paper methods. Literature on the teaching, learning and 

assessment of enlargement and similarity is reviewed, before presenting and analysing a small scale 

classroom based project on the use of DGS as a microworld for transformation geometry. Despite the 

plethora of research on dynamic geometry, “research on using DGS to teach transformation geometry 

is relatively limited” (Jones, 2012, p.49). Through analysing learners’ dialogue and written responses 

to tasks, I propose that a combination of minimally pre-constructed tasks, peer-discussion and utilising 

the dragging and measurement facilities, can enhance the observation of patterns in transformation 

geometry. Finally, I conclude that these conditions can support learners to move from the particular 

to the general, allowing abstractions to be conceived and strengthening learners’ understanding of 

enlargement and similarity. 

 

LITERATURE REVIEW 

Digital Technologies 

Digital technologies play three distinct roles in education: tutor, tool and tutee (Taylor, 1980), however 

Ofsted reports indicate that they are not used to their full potential in mathematics (Ofsted, 2008), 

most likely because they are “predominantly teacher-led and mainly focused on presentational 

software” (JMC, 2011, p.6). This implies that digital technologies are mostly used for demonstrations, 

acting only as the tutor, which is often how teachers use DGS (Ruthven, 2012; deVilliers, 2006), 

indicating that there is a big divide between what the software is capable of doing and how even 

successful mathematics teachers use it (Glover et al., 2007). Falbel (1991) believes technology should 

not just aid passive learning but help it to be more active, however its use as an explorative tool is not 

commonplace: “What we do not have is embedded practice in engaging students in using their skills 

with digital technologies to find out about, learn, apply and communicate aspects of mathematics” 

(JMC, 2011, p.16). In this article I will concentrate on the following opportunities using DGS: learning 

from feedback, observing patterns and seeing connections (Becta, 2009), to support concept 

development in a way which would not be possible with pencil and paper. 
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Leung (2011) refers to the importance of techno-pedagogic task design which “focuses on pedagogical 

processes in which learners are empowered with amplified abilities to explore, re-construct (or re-

invent) and explain mathematical concepts using tools embedded in a technology-rich environment” 

(p.327). Leung and Bolite-Frant (2015) state that “a multi-tool teaching and learning environment 

provides learners a milieu where they can interact with different tools and representations” (p.221).  

Furthermore, Leung and Bolite-Frant (2015) list four key considerations in developing tool-based 

tasks: 

1. Use strategic feedback from a tool-based environment to create learning 

opportunities for student. 

2. Design activities to mediate between the phenomena created by a tool and the 

intended mathematical concept to be learned. 

3. Make use of the affordances and constraints of a tool to design learning 

opportunities. 

4. Switch between different mathematical representations or tools. (Leung, 2017, 

p.73) 

Jones (2011), proposes three approaches to DGS pedagogy, illustrated in Figure 1, and Ruthven (2012) 

describes three case studies which support Jones’ framework.   

 

Figure 1:  Framework of teaching approaches with DGS (adapted from Jones, 2011, p.42). 

Both researchers suggest that learners creating their own files is preferable, however Jones (2011) 

concedes that in the middle scenario, “there is quite some teacher control over the material, but the 

approach can bring in opportunities for creative thinking and problem solving by learners” (p.42). In 

fact, according to Maymon-Erez and Yerushalmy (2006), investigation without guidance makes 

constructing new knowledge less likely, suggesting a minimally pre-constructed file where learners 

can create as well as manipulate could be the optimal approach (see Appendices 1-3 for more 

information, available alongside the online version version of this article).   

Many researchers have discussed the benefits of dragging in DGS (Hölzl, 1996; Jones, 2002; Baccaglini-

Frank & Mariotti, 2010), which aids “the making and justifying of generalisations based on the facility 

to look at sufficient cases” (Becta, 2009, p.4). It serves as both an amplifier to create an array of 

examples which would take too long to construct by hand, but also as a reorganiser to see between 

the examples (Pea, 1985), which many teachers do not appreciate as its key benefit (Ruthven et al., 

2008). Dragging also “helps pupils to notice ‘what changes and what remains the same’ and enables 

them to formulate and test their conjectures” (Becta, 2009, p.7); however, without guidance, mental 

constructions are not guaranteed as “understanding dragging means understanding that the dynamic 

manipulation preserves the critical attributes” (Maymon-Erez & Yerushalmy, 2006, p.5). The fixed 

attributes in the classroom based project were the properties of the transformations, so it was 
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important for pre-constructed files to allow the learner to perform these rather than just manipulate 

the images created. 

The measurement facility also serves as both an amplifier and a reorganiser, as it is quick and provides 

a level of accuracy which enables reliable feedback on conjectures. This facility can be used to compare 

representations, for example comparing the ratios of sides and areas against the scale factor of 

enlargement, because “a medium which enables pupils to switch effortlessly between these 

representations enhances their conceptual development” (Becta, 2009).  Measurements can be set to 

a specified degree of accuracy, however Olivero and Robutti (2007) discuss the “double nature of 

measuring” (p.138), warning that “increasing the number of decimal digits does not mean increasing 

the precision of the tool” (ibid.). 

 

Situated Abstraction 

Mathematical abstraction concerns moving from the particular to the general and decontextualisation 

is often viewed as vital in the process of developing higher order thinking (White & Mitchelmore, 

2007). Piaget considered three forms of abstraction: empirical, focusing on objects; pseudo-empirical, 

concerning actions; and reflective, involving mental actions on mental objects (Tall, 2004). Similarly, 

the cognitive and sociocultural approaches to abstraction focus on moving from concrete to abstract. 

The cognitive approach achieves this by removing context, while the sociocultural approach considers 

context and activity to be inseparable due to the learner’s personal history (Herschkowitz et al., 2001). 

However, does the concrete necessarily precede the abstract? The dialectic perspective considers that 

the process does not start from the concrete at all, rather it shifts “from an undeveloped to a 

developed form of the abstract” (ibid., p.200). 

Herschkowitz et al. (2001) take the sociocultural perspective, defining abstraction as “an activity of 

vertically reorganising previously constructed mathematics into a new mathematical structure” 

(p.195), where learners establish and strengthen interconnections, ensuring mathematical 

consistency between concepts. They identify observable elements of abstraction: constructing, 

recognising and building-with. Constructing is the process of building complex structures from simpler 

ones; recognising is seeing connections with previous knowledge which, according to the authors, is 

easier to observe than constructing; and building-with is transferring previously constructed 

knowledge by applying it to different contexts (Herschkowitz et al., 2001). These actions are not 

completely independent of each other, nor necessarily linear in nature, as when constructing, the 

learner may need to access recognising and building-with structures from previous situations.   

In situated cognition, the classroom culture provides the context in which learning can take place 

(Brown et al., 1989) and the impact of the environment on learning is pivotal (Nardi & Stewart, 2003; 

Boaler, 1999). Figure 2 illustrates that where the two theories of situated cognition and mathematical 

abstraction meet, is another model of abstraction in context: Noss’ & Hoyles’ (1996) situated 

abstraction, a process of making connections in mathematics through making sense of a concrete 

situation (Pratt & Noss, 2002). From this definition, situated abstraction supports the notion of 

microworlds, which are “designed to be discovery-rich in the sense that little nuggets of knowledge 

have been scattered around in it for you to find” (Papert, 1987, p.80).   
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Figure 2: Combining situated cognition and mathematical abstraction. 

In situated abstraction, instead of simply taking one extreme of learning in situ or the other of 

complete decontextualisation, which could be argued is not possible as the setting itself provides 

context, mathematical meaning is constructed by “drawing context into abstraction, populating 

abstraction with objects and relationships of the setting” (Pratt & Noss, 2010, p.27), suggesting it is 

broadening the context which allows learners to establish connections (Pratt & Noss, 2002).  Pratt and 

Noss (2010) also view purpose as a key component in facilitating abstractions, as a purposeful task 

should maximise the significance of the feedback given from a microworld, which should lead to 

learners more readily appreciating the utility of the task which they believe is “an essential element 

of mathematical abstraction” (p.12), supporting Papert’s (1972) stance that motivation in 

mathematics comes from “true personal involvement” (p.251). 

Situated abstraction develops the ideas of building knowledge into schemas (Dubinsky & McDonald, 

2002) and scaffolding in abstraction (Ozmantar & Roper, 2004), into the use of technology to establish 

connections, which Noss and Hoyles (1996) call webbing. However, according to Herschkowitz et al. 

(2001), Noss and Hoyles were not explicit how webbing linked to constructing new knowledge and so 

“did not provide a framework within which to investigate the process of abstraction” (p.198). In 

contrast, Pratt and Noss (2010) argue that situated abstractions are more observable than diSessa’s 

(1993) phenomenological primitives (p-prims), which, in her model of abstraction in context, are small, 

unstructured fragments of knowledge, abstracted from experience and built into concepts called 

coordination classes. The classroom based project focuses on the situated abstraction model to 

explore concept development using DGS, but considers how observing learners constructing, 

recognising and building-with could help link constructing new knowledge with webbing. 

 

Enlargement, Similarity and Proportional Reasoning 

In general, the existing research is very positive about the use of DGS to support the learning of 

geometry (e.g. Arzarello et al., 2013; Jones, 2011; Ruthven et al., 2008), even if research on 

transformational geometry is limited (Jones, 2012). So why is it that mathematics teachers are not 

using it effectively? It could be argued that it is the examination system which is restricting teachers’ 

use of DGS in the classroom as with so many assessment criteria, teachers may not feel they have the 

time to dedicate a series of lessons to investigating scale factor when enlargement may only be worth 

a few marks in the learners’ final exam. However, examination boards in the UK have reported 

weaknesses in learners’ understanding of scale factor (e.g. OCR, 2012), with some candidates using 

different scale factors on each dimension of the shape given (Edexcel, 2012). The most common 

incorrect scale factor used is 2 (ibid.), which could be because traditional methods use this much more 

than others (e.g. Payne et al., 2006), possibly because learners are restricted by space to perform large 

scale factors by hand. There is also a lack of understanding that fractional scale factors produce a 

reduction (Edexcel, 2012) and that negative scale factors do not (OCR, 2012). Some learners do not 

         Mathematical Abstraction 

         Situated    Cognition 
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even appreciate that scale factor is multiplicative and they simply add it to each side (Edexcel, 2010; 

2011) and the language used by learners to describe an enlargement will often not involve the term 

scale factor at all (Edexcel, 2010; OCR, 2011), perhaps as a result of traditional methods not allowing 

for rich discussion. Issues surrounding the role of the centre of enlargement are exposed when 

learners describe enlargements, as many describe an enlargement followed by a translation (OCR, 

2011), suggesting no understanding of the effect of the centre on the position of the image. It is not 

surprising that with these misconceptions regarding simple enlargement, learners continue to struggle 

with the concept of similarity (Edexcel, 2016), for example “few could explain why two rectangles 

were not similar and almost none mentioned scale factors or ratios” (OCR, 2015, p.8). It is also 

common for learners to apply the linear scale factor to areas or angles, even if the solution is 

unreasonable (OCR, 2012) and “the understanding of area and volume scale factors continues to elude 

many” (OCR, 2015, p.19).   

Proportional reasoning “is both the capstone of elementary arithmetic and the cornerstone of all that 

is to follow” (Lesh et al., 1988, p.94) and appreciation of scale factor connects number and geometry 

(Cox, 2013), therefore understanding this concept in its entirety should support learners to solve 

enlargement and similarity problems as well as solving other problems involving ratios (e.g. map 

scales, best buys, proportional division, trigonometry). These connections however are often not 

explicit in textbooks (Lamon, 1995), which often devote entirely separate chapters to each (see Baston 

et al. 2010; Payne et al., 2006; Banks & Alcorn, 2003).  Dragging and measurement with DGS could 

help address issues with transformations (Hollebrands, 2003), facilitating discussion and enabling 

generalisations and connections to be made. However, assessment in the UK has been a barrier to 

teaching with technology (JMC, 2011), something which has not seemed to change with the current 

GCSE 9-1 specifications, where only one digital technology is alluded to: the calculator (Edexcel, 2015; 

AQA, 2014).   

Many researchers, including Piaget, have described proportional reasoning as a global ability (Lesh et 

al., 1988), implying it is a general cognitive strategy, transferable to any situation. However, as learners 

are often not consistent in their level of reasoning, Lesh et al. (1988) argue that it is a more local 

competence which is “initially mastered in small and restricted classes of problem settings” (p.102). 

Exploring enlargement and similarity within the set parameters of a DGS microworld could support 

learners to test out their own conjectures in a mathematically consistent space, allowing the 

construction of new knowledge locally from the multitude of examples given through dragging.  The 

measurement facility could then support learners to recognise and build-with their prior knowledge 

of ratio, adding to their proportional reasoning web, with the intention of eventually leading to more 

global problem solving. 

 

THE CLASSROOM BASED PROJECT 

Research Design and Methodology 

A small scale classroom based project was conducted on enlargement and similarity using Geometer’s 

Sketchpad (GSP) as the dynamic geometry software, with the aim of improving this area of teaching 

in my school at the time.  The following research question was investigated: 

How can dynamic geometry software enhance and strengthen the teaching of transformational 

geometry, in particular in making connections between enlargement and similarity? 
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The project was conducted by means of a case study approach to allow for depth of study into the 

learners’ mathematical thinking and how this learning might occur; however, this approach has the 

limitation that any findings could be unique to the case study group (Denscombe, 2007). The group 

selected consisted of 31 girls aged 13-14 from an 11-16 girls’ school where the proportion of students 

who are from minority ethnic backgrounds or speak English as an additional language (EAL) is above 

average. The school is non-selective and located on the south coast of England in a town where two 

out of the 10 secondary schools are grammars. In order to be as representative as possible of the 

whole school, purposive sampling was used to select this class, as the girls had a similar proportion of 

EAL, were the median age group in the school and had an average level of attainment in mathematics. 

There are limitations to this strategy including: the small size of the group; from only one school and 

hence the same geographical area; the fact that the setting was single-sexed; and there was no control 

group to give quantifiable evidence that any conceptual improvements were as a result of the DGS. 

Although it is not possible to generalise from this case study (Denscombe, 2007), due to the purposive 

sampling from within the school, it was intended that any findings could be used to inform planning 

across the school’s mathematics department. The context of the school also provides the reader the 

opportunity for comparison with similar schools. 

The class worked in pairs on transformation geometry for six lessons, three of which were in the 

computer room: 

Lesson 1: Recap of how to perform reflections, rotations and enlargement using 

traditional pencil and paper methods 

Lesson 2: Transforming Dance activity on GSP (see Appendix 1, available online) 

Lesson 3: Recap on enlargement by a positive integer scale factor using traditional 

pen and paper methods 

Lessons 4 and 5: Exploring enlargement and similarity on GSP (see Appendix 3, 

available online) 

Lesson 6: Solving similarity problems in the classroom 

In part the programme of lessons was dictated by access to the school’s computer rooms, however 

the learners had previously met pen and paper methods for simple transformations so the earlier 

classroom based lessons were an opportunity to remind learners of these methods before seeing how 

working with GSP could enhance and extend that prior learning.   

Responses to the GSP activities were recorded on task sheets by the students and some of their 

discussions were observed first hand by the author. These discussions were recorded by scribing the 

dialogue observed while at the same time questioning learners to help move learning forward. There 

is the limitation that I both facilitated the activities and observed the interactions (BERA, 2011), which 

could have an effect on the validity and objectivity of the data collected, however the findings are only 

intended as a means of improving the learning environment in this school rather than an attempt to 

generalise beyond this. To follow the Ethical Guidelines for Educational Research (ibid.), the class were 

informed of the purpose of the project and how their written responses and scribed discussions would 

be used to form my research. Permission was obtained in loco-parentis from the Head Teacher to 

conduct the study. Furthermore, to maintain confidentiality and anonymity, the students referred to 

in this report are done so by initials only (ibid.). 
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Getting to Grips with GSP 

The learners used a desktop version of GSP, however since the classroom based project, which was 

conducted in 2012, touchscreen technology has developed widespread usage. The learners had 

previously only seen the software used on an interactive whiteboard, which ironically relates more 

closely to how DGS is used on handheld touchscreen technology, although the latter allows for 

manipulation with both hands simultaneously (Arzarello et al., 2013), so learning the basic functions 

needed to be incorporated into the activities. This was achieved by using GSP to explore combinations 

of transformations after performing reflections, rotations and translations on paper the previous 

lesson. The activity designed for this was entitled ‘Transforming Dance’ (see Appendix 1, available 

alongside the online version of this article), adapted from a task by Olive (2000) in which learners 

produce stickmen with GSP and then, using the transformation functions, make their stickmen dance. 

To address purpose, a physically active dancing ‘starter’ was devised using translations, reflections 

and rotations, which may have increased motivation in the GSP task as students seemed to enjoy 

recreating the dance moves with their stickmen. The task prompted learners to discuss the effects of 

combining transformations on their stickmen, with the intention of constructing new knowledge. This 

was then extended with an activity on performing multiple transformations on polygons and 

describing their equivalent single transformations (see Lack, 2011), with the intention of enabling 

learners to recognise how they needed to apply the knowledge from the stickmen activity, providing 

the utility of the task (Ainley et al., 2006). 

I noted several differences between the introduction to GSP lesson and performing transformations 

by hand the previous lesson. Firstly, students were generating and testing conjectures in just one 

session, perhaps because GSP acted as an amplifier, allowing students to perform combinations of 

transformations at a speed which on paper would not have been achievable with this class. Secondly, 

I observed that AF, a particularly artistic student, was more engaged in the lesson than usual, creating 

intricate figures which would have been too time consuming, and perhaps too difficult, to transform 

on paper. Papert (1971) argued that microworlds aid pupil involvement; for AF her level of 

engagement and creative response to the task could indicate that the dynamic geometry environment 

acted as a motivational aide. GSP also provided more accuracy than many could achieve on paper, 

which was particularly true for GB, who the previous lesson had struggled with drawing 

transformations by hand, was able to produce quick and accurate diagrams. This could have supported 

learning for GB as she was able to use her accurate results to describe the effect of double reflections 

in parallel lines. Finally, the dragging facility allowed students to physically move the original object to 

see the changing effect on the image, allowing them to see many examples as opposed to just one. 

The conjectures students made, on the effect of double reflections for example, could be attributed 

to this movement away from specific concrete examples, indicating that GSP acted as a reorganiser 

for performing transformations, which may have allowed more abstract generalisations to be made. 

According to Pratt and Noss (2010) it is important to design tasks which allow for abstraction. During 

the introductory task, students may have primarily made abstractions as a result of the dragging 

feature allowing them to move from the particular to the general, so it was important to incorporate 

this into the main task on enlargement and similarity. I also decided to see how the measurement 

facility could support learners to conceive abstractions by establishing connections between scale 

factor and ratio. I designed four activities (see Appendix 2, available alongside the online version of 

this article) for the class to work on in pairs over two lessons: 

1. Exploring enlarging a triangle from a given centre 

2. Exploring corresponding angles in similar triangles 
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3. Exploring corresponding sides in similar triangles 

4. Exploring areas of similar triangles 

The activities were piloted prior to the lessons with two students, JC and SA, and as a result 

modifications were made (see Appendix 3, available alongside the online version of this article) before 

carrying out the task with the rest of the group. JC and SA then acted as Lead Learners (Stewart, 2009), 

using their new knowledge to support the rest of the class, affording me time to scribe interactions 

between the pairs. Herschkowitz et al. (2001) believe that the construction of knowledge is most likely 

to be observed in a social setting, so to facilitate the observations of possible abstractions in this 

project, each task was designed to prompt peer-discussion. The tasks were also designed to encourage 

explanation, justification and reasoning which is considered important when designing tasks using GSP 

(Jones, 2011) and indeed in the learning of mathematics in general. Initially there was only one 

context, the task itself in the dynamic geometry environment, however Pratt & Noss (2002) discuss 

the importance of applying knowledge in different situations, so following these sessions, students 

solved enlargement and similarity problems in the classroom to see if they could apply their 

knowledge.   

 

Dragging from the Particular to the General 

In the pilot task, the following dialogue ensued when discussing the effect of dragging the centre of 

enlargement: 

SA:  When you move the point further away, will the triangle follow? 
JC:  No, it will end up further over there…yes I’m right. 
SA:  Oh, because the distance is further away it ends up further away in the other 
direction. 
Teacher:  What happens if you move the centre to the edge or inside the original? 
SA:  The copied image is spread around. 
JC:  The distances are still doubled. 

SA started the session unaware of the effect of the centre of enlargement, however after this activity, 

and with support from JC, she could see the how the centre dictated the position of the image, this 

could have been supported by dragging, as she was able to move from the specific example they 

started with to a whole set of examples. After the activity both were able to correctly predict the 

position of the image when I pointed to possible centres, indicating an abstraction may have been 

made. A similar discussion was observed between AO and RT in the whole class session: 

RT:  If I move the point of enlargement… 
AO:  The closer…oh, it overlaps with the original! 
Teacher:  What effect is the centre having?   
RT:  Changes where the new one is. 
AO:  If the point is far away the new one is far away too and if closer it overlaps. 
Teacher:  If the centre of enlargement was above the original triangle, where would 
the image be? 
AO:  Here [points below] 
Teacher:  And if the centre was to the right? 
AO:  On the left. 
RT:  So if here [points to left side] would be here [points to right]. Let’s check! 
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On analysing written responses to the activity, all students discovered that the centre of enlargement 

affected the position of the image and most could describe roughly where the image would be 

depending on that position. Literature shows that feedback from DGS “is not only quick, but also 

reliable, non-judgemental and impartial” (Becta, 2009, p.2). AO and RT seemed to value this feedback 

and appeared to gain in confidence in their understanding of enlargement, making generalisations 

just ten minutes into the activity. Papert (1987) describes a microworld as an environment which is 

“created and designed as a safe place for exploring” (p.80), in this respect the use of GSP in this project 

could be considered a microworld.   

A pre-constructed file using a slider was created to investigate the effect of scale factor to support 

seeing the general as well as the particular, which could be less likely if you type in specific scale factors 

into the dialogue box: 

JC:  Move the slider to 3 
SA:  It’s not equal [points to distances between the centre and corresponding 
vertices] 
JC:  That’s because it’s twice the distance here and once here so three times in total. 
Scale factor 3. 
SA:  Ah, ok. 
Teacher:  What do you think would happen for scale factor 4? 
SA:  Will that be three times the distance [points between corresponding vertices] so 
four times in total? 
Teacher:  And what can you say about the sides? 
SA:  They’re four times bigger 
Teacher:  What happens if the scale factor is less than one? 
SA:  Move the slider to ½ 
JC:  The original triangle is the enlargement and the image is the original if that 
makes sense! 
SA:  Instead of enlarging, it shrunk! 
JC:  It’s de-larged…is that a word? 
Teacher:  Has it reduced in size? 
JC:  Yes reduced! 

The language JC and SA were using had evolved since the start of the session, using the terms image 

and scale factor confidently, perhaps as a result of rich discussion. They seemed to recognise the 

general effect of the scale factor and appeared to construct scale factors less than one into their ‘web’ 

of knowledge, perhaps building a new, more complex structure from the simpler structure of positive 

integer scale factors. Their initial conjecture was that the triangles had swapped positions, however 

through their discussion and further dragging they reorganised their knowledge of scale factors in 

order to deal with multiplying by a proper fraction. Due to the new language developed and the 

construction made, this could be considered an abstraction (Herschkowitz et al., 2001). JC and SA even 

accidentally discovered negative scale factors when the slider moved past zero which they also 

attempted to connect to their scale factors web in response to the new knowledge: 

JC:  It’s flipped!   
SA:  Wow! 
JC:  So if you change it to -1 it would be exactly the same distance apart [as +1] but 

over there. What about -2? 
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Perhaps as a result of dragging, a deeper understanding of scale factor had been developed and GSP 

seemed to spark a real interest, which could be why they were able to make higher level conjectures 

than their current level of attainment. AO and RT were also observed discovering negatives, 

attempting to generalise in the same way as for positive scale factors and on analysis of the written 

responses, so had other pairs despite not being prompted. The class had not been expected to deal 

with negative scale factors until GCSE, so dynamic geometry could have allowed them to make 

abstractions beyond their supposed ability, agreeing with Ruthven (2012) that unexpected results can 

be a positive element of DGS. For CM and SS, dragging the slider from 2 to ½ also gave significance to 

scale factor 1: 

CM: It gets smaller. If you did it at one it’d be exactly the same. 
SS:  So you’re like halving it. When it’s smaller than one you halve it, when at one it 
stays the same. 
CM:  You only halve it for scale factor ½ 

 

Measurement and Accuracy 

When exploring corresponding angles, CL and MH started with the misconception that scale factor 

also applies to angles; however the angle measurement facility gave the pair immediate feedback 

from this incorrect conjecture and some additional support from me appeared to allow them to 

readjust their thinking and further develop the concept: 

CL:  What happens to the angles? 
MH:  They’re getting bigger 
Teacher:  All of them? What if you compare corresponding angles? [Indicates on 
screen] 
[MH measures angles] 
Teacher:  What do you know about angles in a triangle? 
CL:  They add up to 180°. 
Teacher:  So can all the angles get bigger when you enlarge? 
MH:  No they get smaller. No, stay the same [laughs]. You’re not changing the 
angles, it’s the edges getting longer. You can’t double the angles. You’d get 360 
which is a circle. 
Teacher:  Which shape has interior angles adding to 360°? 
MH:  Oh, a square! 

In past GCSE examinations, “better candidates instinctively knew that enlargement preserved angle 

but far too many multiplied by the scale factor to get an unreasonable angle” (OCR, 2012, p.20). On 

analysis of the written responses, most pairs appreciated that the scale factor had no effect on the 

angle size, which could be attributed to the angle measurement facility and the ability to drag; only 

one pair had not understood that angles are preserved. This indicates that these students could have 

conceived an abstraction using DGS that many learners do not make by the end of secondary school. 

In addition, it was observed that using GSP with support from the teacher, helped one pair of students 

(PW and LT) understand angle notation, which at the start of the session they were not secure with, 

as they needed to be shown how to click on the vertices in the correct order to measure the required 

angle. 

Clements (2002) highlights the importance of the role of the teacher to ensure learners see the 

mathematics and make the abstractions intended. Both the conversation with CL and MH above and 

the support needed for PW and LT demonstrate this importance; however, with a class of 31 students, 
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time for such a rich discussion with every learner is limited. Research has shown that managing time 

during lessons with DGS needs development (Jones, 2011) and this was certainly found to be the case 

with this project, even with the addition of two lead learners. 

Although there is a facility for calculating ratios of sides in GSP, using the calculator function instead 

seemed to reinforce the multiplicative nature of scale factor and the importance of corresponding 

sides, which could be overlooked by learners if the process of this calculation is removed: 

SA:  The ratio is the same as the scale factor 
JC:  Only if you do the right sides. If you do k’ divided by j it won’t as the sides are 

different. 

For JC and SA, the measurement facility may have both amplified and reorganised the exploration of 

corresponding sides in similar triangles, enabling this comparison of ratio of sides to scale factor.   

Olivero and Robutti (2007) warned that although helpful to aid abstractions, accuracy in measurement 

using GSP could also be an issue. Here, the activity had been designed for abstraction using a slider to 

enable students to see the general rather than just amplifying the particular, however when it came 

to comparing area scale factors, the slider proved to be a problem as although it displayed 2.00 for 

the scale factor, GSP stores numbers more accuracy than it displays (ibid.), so when JC and SA 

calculated the area ratio they got 3.98 instead of 4.00. This made it difficult to spot patterns and so 

the class were advised to change their area ratios to be correct to the nearest unit. When students 

tabulated these results, most students were able to quickly spot the connection between the length 

ratio and the area ratio and JC appeared to make connections with squaring and area, building on her 

web of knowledge on proportional reasoning: 

SA:  Oh I get it, it will be 36. It’s squaring it. 
JC:  Yes, because it’s area. 

 

Transferable Abstractions 

The class were asked to anonymously complete a feedback questionnaire (see Appendix 4, available 

alongside the online version of this article), to allow students to be honest about their experiences 

using GSP (Denscombe, 2007). The feedback was generally very positive, with students indicating that 

they found the activities enjoyable and interesting with most students feeling they had progressed in 

their understanding of enlargement. The negative comments focused on difficulties using the 

software, perhaps supporting Jones’ (2011) assertion that “even with carefully designed tasks, 

sensitive teacher input, and a classroom environment that encourages conjecturing and a focus on 

mathematical explanation, it can take quite some time for the benefits of using DGS to emerge” (p.40). 

The following lesson the transferable nature of any abstractions they may have made was investigated 

through two activities: a sorting activity (see French, 2012) where students matched similar triangles 

and their scale factors, which demonstrated that students could apply their knowledge of preserved 

angle by identifying pairs of similar triangles and most could then calculate the scale factors and 

missing lengths; the class then completed a ‘rally coach’ activity, where students took turns to support 

each other to solve similarity problems. In the written responses, all students could find linear scale 

factor and use it to find missing lengths, suggesting an understanding of the multiplicative nature of 

scale factor. The area scale factor proved to be too challenging for some who needed prompting that 

the linear scale factor did not apply to area, this could however be attributed to lack of time spent on 

the last GSP activity rather that the potential of DGS to support this concept. 
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CONCLUSIONS 

Dynamic geometry can act as a microworld to support concept development, which is achieved 

through the dragging and measurement facilities acting as both amplifiers, speeding up processes and 

as reorganisers, moving the learner from the particular to the general, in a way that is not achievable 

using pencil and paper alone. As evidenced by the literature review, these factors, along with others 

such as non-threatening, accurate feedback and peer-discussion, can facilitate pattern spotting and 

making connections, enabling situated abstractions more likely to be conceived. DGS can increase 

confidence, motivation and understanding when managed effectively by the teacher, however this is 

the element that needs greatest development to ensure the potential of dynamic geometry is realised, 

therefore further research is needed into strategies teachers can use to manage the learning of large 

classes using DGS, which was found to be an obstacle in my empirical research.   

The findings from the classroom based project, although small-scale, support the existing literature in 

terms of the amplification and reorganisation effects of both dragging and measurement in DGS.  

Furthermore, the findings suggest that teaching transformations with GSP has great potential to 

improve learners’ ability to make and test conjectures in transformation geometry and to make 

connections between scale factor and ratio.  The literature review suggests proportional reasoning is 

local competence, which through constructing and webbing knowledge can lead to more global 

problem solving. To make these situated abstractions more likely to occur, a combination of designing 

minimally pre-constructed tasks, peer-discussion and utilising the dragging and measurement facilities 

are paramount to allow movement from the concrete to the abstract. 
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